Sistema de Monitoreo de Variables Fisicoquímicas en el Mar
DOI:
https://doi.org/10.46588/invurnus.v18i1.67Abstract
Abstract. In this article, an intelligent buoy prototype is presented to identify physicochemical variables that can be used to determine the presence of oily substances accumulated in the sea due to marine plastic debris. The buoy is placed in the sea, has a Global Positioning System (GPS), and allows water samples to be taken with sensors to be analyzed. The buoy has four sensors to monitor CO2, TEMPERATURE, PH, and TURBIDITY. The data will be sent, stored, and labeled with machine learning to predict scenarios. The information will generate an open access database to be consulted in real-time and develop a results dashboard.
Downloads
References
Referencias
M. &. K. D. Karydis, «Marine water quality monitoring: A review.,» Marine pollution bulletin, vol. 77, nº 1-2, pp. 23-36., 2013.
A. R. T. R. C. Z. M. K. S. G. &. V. C. R. Roik, «Year-long monitoring of physico-chemical and biological variables provide a comparative baseline of coral reef functioning in the central Red Sea.,» PLoS One, vol. 11, nº 11, p. 15, 2016.
V. K. D. G. S. K. R. T. G. S. R. M. K. K. .. &. J. J. Vase, «Spatio-temporal variability of physico-chemical variables, chlorophyll a, and primary productivity in the northern Arabian Sea along India coast,» Environmental monitoring and assessment, vol. 190, nº 3, pp. 1-14., 2018.
I. A. A. A. B. M. &. M. A. Lamine, «Monitoring of Physicochemical and Microbiological Quality of Taghazout Seawater (Southwest of Morocco): Impact of the New Tourist Resort" Taghazout Bay".,» Journal of Ecological Engineering, vol. 20, nº 7, p. 11, 2019.
R. F. E. A. J. B. D. C. L. C. C. .. &. Y. M. Danovaro, «Ecological variables for developing a global deep-ocean monitoring and conservation strategy.,» Nature Ecology & Evolution,, vol. 4, nº 2, pp. 181-192., 2020.
T. R. S. P. P. M. C. C. L. H. S. &. K. W. Z. Reddy, « A deep neural networks based model for uninterrupted marine environment monitoring.,» Computer Communications,, vol. 157, nº 1, pp. 64-75, 2020.
F. E. H. E. A. C. T. K. R. D. A. S. D. .. &. J. W. Muller‐Karger, «Satellite sensor requirements for monitoring essential biodiversity variables of coastal ecosystems.,» Ecological applications,, vol. 28, nº 3, pp. 749-760., 2018.
D. A. P. A. J. &. A. J. B. Veldkornet, « The distribution of salt marsh macrophyte species in relation to physicochemical variables.,» South African Journal of Botany,, vol. 107, nº 1, pp. 84-90., 2016.
A. I. &. W. Y. S. nyang, «Phytoplankton diversity and community responses to physicochemical variables in mangrove zones of Guangzhou Province, China.,» Ecotoxicology,, vol. 29, nº 6, pp. 650-668., 2020.
H. O. R. &. O.-O. J. Ochieng, « Comparison of temperate and tropical versions of Biological Monitoring Working Party (BMWP) index for assessing water quality of River Aturukuku in Eastern Uganda.,» Global Ecology and Conservation, vol. 23, nº 1, p. 1183, 2020.
A. Al-Badi, H. Yousef, T. Al Mahmoudi, M. Al-Shammaki, A. Al-Abri y Y A. Al-Hinai, «Sizing and modelling of photovoltaic water pumping system,» International Journal of Sustainable Energy, pp. 415-427, 2017.
V. C. &. K. V. R. Sontake, «Solar photovoltaic water pumping system-A comprehensive review.,» Renewable and Sustainable Energy Reviews., pp. 1038-1067., 2016..
P. C. Krause, O. Wasynczuk y S. D.Sudhoff, ANALYSIS OF ELECTRIC MACHINERY AND DRIVE SYSTEMS, Second Edition, New York: Wiley-IEEE Press , 2002.
F. H. T. M. A. L. R. D. M. N. O. E. H. E. P. B. G. y. M. M. E. Andrade, Los desafíos de la agricultura argentina: satisfacer las futuras demandas y reducir el impacto ambiental., Argentina: INTA., 2017.
K. Arunendra y R. Vilas, «Performance investigations of solar water pumping system using helical pump under the outdoor condition of Nagpur, India,» ELSEVIER, pp. 737-745, 2016.
Y. Kamlesh, O.S.Sastry, R.Wandhare, N.Sheth, M.Kumar, B.Bora, R. Singh, Renu y A.Kumara, «Performance comparison of controllers for solar PV water pumping applications,» ELSEVIER, pp. 195-202, 2015.
M. Benghanem, K. Daffallah, S. Alamri y A. Joraid, «Effect of pumping head on solar water pumping system,» ELSEVIER, pp. 334-339, 2014.
G. A. Djoudi, A. A.Hadj y H. Salhi, «Improvement and validation of PV motor-pump model for PV pumping system performance analysis,» ELSEVIER, pp. 310-320, 2017.
B. Shatadru y I. M. Tariq, «Dynamic Modelling of a Solar Water Pumping System with Energy Storage,» Hindawi, Journal of Solar Energy, pp. 1-12, 2018.
H. M. Dhiaa, K. Tamer y N. Farrukh, «A review of photovoltaic water pumping system designing methods, control strategies and field performance,» ELSEVIER, pp. 70-86, 2017.
S. John y E. Dimitris, «Pumping station design for a pumped-storage wind-hydro power plant,» ELSEVIER, pp. 3009-3017, 2007.
M. F. E. García, J. M. González-López, R. O. Betancourt, M. A. González, E. V. Laureano y F. R. & Haro, «Análisis de convertidores bidireccionales cc-cc en representación de ecuaciones en espacios de estado,» Difu100ci@, Revista de difusión científica, ingeniería y tecnologías,, pp. 155-161, 2021.
P. C. Krause, O. Wasynczuk, S. D. Sudhoff y S. D. & Pekarek, Analysis of electric machinery and drive systems, John Wiley & Sons., 2013.
MatWorks, «Solar PV characteristics using m-code,» 05 09 2022. [En línea]. Available: https://www.mathworks.com/matlabcentral/fileexchange/61388-solar-pv-characteristics-using-m-code.
Mathworks-Asynchronous-Machine, 23 08 2022. [En línea]. Available: https://www.mathworks.com/help/physmod/sps/powersys/ref/asynchronousmachine.html?s_tid=srchtitle_asynchronous%20machine_1.
Evans, «BOMBAS SUMERGIBLES,» 05 09 2022. [En línea]. Available: https://evans.com.mx/mkt/catalogo/flipbooks/bombeo-solar/.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.